Processing: Looping and Conditionals

The while Loop:

A while loop is a control structure that allows you to repeat a task a certain number of times.
Syntax:
The syntax of a while loop is:

while(Boolean expression) { //Statements }

The do...while Loop:

A do...while loop is similar to a while loop, except that a do...while loop is guaranteed to execute at least one
time.

Syntax:
The syntax of a do...while loop is:

do { //Statements }while(Boolean expression);

The for Loop:

A for loop is a repetition control structure that allows you to efficiently write a loop that needs to execute a
specific number of times.

A for loop is useful when you know how many times a task is to be repeated.
Syntax:
The syntax of a for loop is:

for(initialization; Boolean expression; update) { //Statements }

Enhanced for loop in Java:

As of java 5 the enhanced for loop was introduced. This is mainly used for Arrays.

Syntax:

The syntax of enhanced for loop is:

for (declaration : expression) ({ //Statements }



The break Keyword:

The break keyword is used to stop the entire loop. The break keyword must be used inside any loop or a
switch statement.

The break keyword will stop the execution of the innermost loop and start executing the next line of code
after the block.

The continue Keyword:

The continue keyword can be used in any of the loop control structures. It causes the loop to immediately
jump to the next iteration of the loop.

In a for loop, the continue keyword causes flow of control to immediately jump to the update statement.

In a while loop or do/while loop, flow of control immediately jumps to the Boolean expression.
Syntax:
The syntax of a continue is a single statement inside any loop:

continue;

The if Statement:

An if statement consists of a Boolean expression followed by one or more statements.

Syntax:

The syntax of an if statement is:

if (Boolean_ expression) { //Statements will execute if the Boolean expression
is true }

The if...else Statement:

An if statement can be followed by an optional else statement, which executes when the Boolean expression
is false.

Syntax:

The syntax of a if...else is:

if (Boolean_expression) //Executes when the Boolean expression is true
telse{ //Executes when the Boolean expression is false }



The if...else if...else Statement:

An if statement can be followed by an optional else if...else statement, which is very usefull to test various
conditions using single if...else if statement.

Syntax:

The syntax of a if...else is:

if (Boolean expression 1) //Executes when the Boolean expression 1 is true

}else if (Boolean expression 2){ //Executes when the Boolean expression 2 is
true }else if(Boolean expression 3){ //Executes when the Boolean expression
3 is true }else { //Executes when the one of the above condition is true. }

Nested if...else Statement:

It is always legal to nest if-else statements. When using if , else if , else statements there are few points to
keep in mind.

An if can have zero or one else's and it must come after any else if's.
An if can have zero to many else if's and they must come before the else.

Once an else if succeeds, none of he remaining else if's or else's will be tested.
Syntax:
The syntax for a nested if...else is as follows:

if (Boolean_ expression 1
if (Boolean_ expression 2
true } 3}

//Executes when the Boolean expression 1 is true
//Executes when the Boolean expression 2 is

){
){

The switch Statement:

A switch statement allows a variable to be tested for equality against a list of values. Each value is called a
case, and the variable being switched on is checked for each case.

Syntax:

The syntax of enhanced for loop is:

switch(expression) { case value : //Statements break;
//optional case value : //Statements break; //optional
//You can have any number of case statements. default : //Optional

//Statements }



