
Processing: Looping and Conditionals

The while Loop:
A while loop is a control structure that allows you to repeat a task a certain number of times.

Syntax:
The syntax of a while loop is:

while(Boolean_expression) { //Statements }

The do...while Loop:
A do...while loop is similar to a while loop, except that a do...while loop is guaranteed to execute at least one
time.

Syntax:
The syntax of a do...while loop is:

do { //Statements }while(Boolean_expression);

The for Loop:
A for loop is a repetition control structure that allows you to efficiently write a loop that needs to execute a
specific number of times.

A for loop is useful when you know how many times a task is to be repeated.

Syntax:
The syntax of a for loop is:

for(initialization; Boolean_expression; update) { //Statements }

Enhanced for loop in Java:
As of java 5 the enhanced for loop was introduced. This is mainly used for Arrays.

Syntax:
The syntax of enhanced for loop is:

for(declaration : expression) { //Statements }

The break Keyword:
The break keyword is used to stop the entire loop. The break keyword must be used inside any loop or a
switch statement.

The break keyword will stop the execution of the innermost loop and start executing the next line of code
after the block.

The continue Keyword:
The continue keyword can be used in any of the loop control structures. It causes the loop to immediately
jump to the next iteration of the loop.

• In a for loop, the continue keyword causes flow of control to immediately jump to the update statement.

• In a while loop or do/while loop, flow of control immediately jumps to the Boolean expression.

Syntax:
The syntax of a continue is a single statement inside any loop:

continue;

The if Statement:
An if statement consists of a Boolean expression followed by one or more statements.

Syntax:
The syntax of an if statement is:

if(Boolean_expression) { //Statements will execute if the Boolean expression
is true }

The if...else Statement:
An if statement can be followed by an optional else statement, which executes when the Boolean expression
is false.

Syntax:
The syntax of a if...else is:

if(Boolean_expression){ //Executes when the Boolean expression is true
}else{ //Executes when the Boolean expression is false }

The if...else if...else Statement:
An if statement can be followed by an optional else if...else statement, which is very usefull to test various
conditions using single if...else if statement.

Syntax:
The syntax of a if...else is:

if(Boolean_expression 1){ //Executes when the Boolean expression 1 is true
}else if(Boolean_expression 2){ //Executes when the Boolean expression 2 is
true }else if(Boolean_expression 3){ //Executes when the Boolean expression
3 is true }else { //Executes when the one of the above condition is true. }

Nested if...else Statement:
It is always legal to nest if-else statements. When using if , else if , else statements there are few points to
keep in mind.

• An if can have zero or one else's and it must come after any else if's.

• An if can have zero to many else if's and they must come before the else.

• Once an else if succeeds, none of he remaining else if's or else's will be tested.

Syntax:
The syntax for a nested if...else is as follows:

if(Boolean_expression 1){ //Executes when the Boolean expression 1 is true
if(Boolean_expression 2){ //Executes when the Boolean expression 2 is
true } }

The switch Statement:
A switch statement allows a variable to be tested for equality against a list of values. Each value is called a
case, and the variable being switched on is checked for each case.

Syntax:
The syntax of enhanced for loop is:

switch(expression){ case value : //Statements break;
//optional case value : //Statements break; //optional
//You can have any number of case statements. default : //Optional
//Statements }

	

